Enabling Large-Molecule Simulations of Biological Interest through LSDALTON's DFT Method
نویسندگان
چکیده
In this paper, we present the performance of LSDALTON's DFT method in large molecular simulations of biological interest. We primarily focus on evaluating the performance gain by applying the density fitting (DF) scheme and the auxiliary density matrix method (ADMM). The enabling effort is put towards finding the right build environment (composition of the compiler, an MPI and extra libraries) which generates a full 64-bit integer-based binary. Using three biological molecules varying in size, we verify that the DF and the ADMM schemes provide much gain in the performance of the DFT code, at the cost of large memory consumption to store extra matrices and a little change on scalability characteristics with the ADMM calculation. In the insulin simulation, the parallel region of the code accelerates by 30 percent with the DF calculation and 56 percent in the case of the DF-ADMM calculations.
منابع مشابه
Encapsulation of Methane Molecules into C60 Fullerene Nanocage: DFT and DTFB-MD Simulations
Extensive urbanization has greatly raised the demand for cleaner coal- and petroleum-derived fuels. Mainly composed of methane, natural gas represents a promising alternative for this purpose, making its storage a significant topic. In the present research, deposition of methane molecules in C60 fullerene was investigated through a combined approach wherein density functional based tight bindin...
متن کاملCO Adsorption on the V (100) Surface: A Density Functional Study
Adsorption of CO molecule on the Vanadium surface has been studied by using of the DFT method with LANL2DZ,6-31G* and 6-31G** basis sets by GGA approximation of theory. Using periodic first principles simulations we investigate the interaction of oxygen molecule with regular V (100) surface. The limitation of this approach is the use of thin metallic slabs with a limited range for their coverag...
متن کاملElectronic Structure, Biological Activity, Natural Bonding Orbital (NBO) and Non-Linear Optical Properties (NLO) of Poly-Functions Thiazolo [3,2-a]Pyridine Derivatives. DFT Approach
The optimized structures of studied compounds 23-28 are non planner with the two phenyl at C3 and C9 are out of the molecular plane of thiazolo[3,2-a]pyridine as indicated from a dihedral angles of 710 and 1160 respectively, using DFT-B3LYP method with 6-311G(d,p) as basis set. The natural bonding orbital (NBO) analysis of the parent molecule 23 have been analyzed in terms of the hybridization ...
متن کاملThe evaluation and comparison of thermo-physical, chemical and biological properties of palladium (II) complexes on binuclear diamine ligands with different anions using the DFT method
As cancer is the top killer diseases in the world, the scientists and researchers have been searching the new drugs and remedy methods. Most of the anticancer drugs are organic compounds which were approved by the FDA while metallodrugs are very rare. In the present time, some palladium and rhodium complexes are going to use as anticancer molecules. The palladium (II) complex has higher antican...
متن کاملBiological, Electronic, NLO, NBO, TDDFT and Vibrational Analysis of 1-benzyl-4-formyl-1H-pyrrole-3-carboxamide
Biological Electronic, Optical Properties, and Vibrational Analysis of 1-benzyl-4-formyl-1H-pyrrole 3carboxamide are studied by using a combination of DFT/B3LYP method and 6-311G (d, p) basis set. Optimized parameters of the title molecule are well-matched with the experiments. The NLO properties of 1-benzyl-4-formyl-1H-pyrrole 3carboxamide have been examined with the help of Polarizability...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014